skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Jalal, Md Shah"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Myeloperoxidase (MPO) is a heme peroxidase with microbicidal properties. MPO plays a role in the host’s innate immunity by producing reactive oxygen species inside the cell against foreign organisms. However, there is little functional evidence linking missense mutations to human diseases. We utilized in silico saturation mutagenesis to generate and analyze the effects of 10,811 potential missense mutations on MPO stability. Our results showed that ~71% of the potential missense mutations destabilize MPO, and ~8% stabilize the MPO protein. We showed that G402W, G402Y, G361W, G402F, and G655Y would have the highest destabilizing effect on MPO. Meanwhile, D264L, G501M, D264H, D264M, and G501L have the highest stabilization effect on the MPO protein. Our computational tool prediction showed the destabilizing effects in 13 out of 14 MPO missense mutations that cause diseases in humans. We also analyzed putative post-translational modification (PTM) sites on the MPO protein and mapped the PTM sites to disease-associated missense mutations for further analysis. Our analysis showed that R327H associated with frontotemporal dementia and R548W causing generalized pustular psoriasis are near these PTM sites. Our results will aid further research into MPO as a biomarker for human complex diseases and a candidate for drug target discovery. 
    more » « less